Arrestin in ciliary invertebrate photoreceptors: molecular identification and functional analysis in vivo.
نویسندگان
چکیده
Arrestin was identified in ciliary photoreceptors of Pecten irradians, and its role in terminating the light response was established electrophysiologically. Downstream effectors in these unusual visual cells diverge from both microvillar photoreceptors and rods and cones; the finding that key regulatory mechanisms of the early steps of visual excitation are conserved across such distant lineages of photoreceptors underscores that a common blueprint for phototransduction exists across metazoa. Arrestin was detected by Western blot analysis of retinal lysates, and localized in ciliary photoreceptors by immunostaining of whole-eye cryosections and dissociated cells. Two arrestin isoforms were molecularly identified by PCR; these present the canonical N- and C-arrestin domains, and are identical at the nucleotide level over much of their sequence. A high degree of homology to various β-arrestins (up to 70% amino acid identity) was found. In situ hybridization localized the two transcripts within the retina, but failed to reveal finer spatial segregation, possibly because of insufficient differences between the riboprobes. Intracellular dialysis of anti arrestin antibodies into voltage-clamped ciliary photoreceptors produced a gradual slow-down of the photocurrent falling phase, leaving a tail that decayed over many seconds after light termination. The antibodies also caused spectrally neutral flashes to elicit prolonged aftercurrents in the absence of large metarhodopsin accumulation; such aftercurrents could be quenched by chromatic illumination that photoconverts metarhodopsin back to rhodopsin. These observations indicate that the antibodies depleted functionally available arrestin, and implicate this molecule in the deactivation of the photoresponse at the rhodopsin level.
منابع مشابه
Phototransduction: Shedding Light on Translocation
Light induces the migration of arrestin to the photosensitive membrane in both vertebrate and invertebrate photoreceptors. New work has identified a phosphoinositide lipid binding domain in Drosophila arrestin and implicates PIP(3) in control of arrestin translocation.
متن کاملExpression of rhodopsin and arrestin during the light-dark cycle in Drosophila.
PURPOSE To determine the protein and transcript levels for rhodopsin (Rh1), arrestin 1 (Arr1), and arrestin 2 (Arr2) over a 12 h light/12 h dark cycle in the retina of the fruit fly, Drosophila melanogaster. This information is important for understanding the process of photoreceptor membrane turnover. METHODS Drosophila were entrained for several generations to a daily 12 h light/12 h dark c...
متن کاملRegulation of rod phototransduction machinery by ciliary neurotrophic factor.
Ciliary neurotrophic factor (CNTF) promotes photoreceptor survival but also suppresses electroretinogram (ERG) responses. This has caused concerns about whether CNTF is detrimental to the function of photoreceptors because it is considered to be a potential treatment for retinal degenerative disorders. Here we report that the suppression of ERG responses is attributable to negative regulation o...
متن کاملMechanism of arrestin 2 function in rhabdomeric photoreceptors.
Arrestins have emerged as one family of proteins that mediate the inactivation of G-protein-coupled receptors. We have isolated cDNA clones encoding two arrestin isoforms of the dipteran visual system, Calliphora arrestin 1 (Arr1) and arrestin 2 (Arr2). Microsequencing established that the arr2 gene encodes the Calliphora 49-kDa protein characterized previously as a photoreceptor-specific prote...
متن کاملMyosin III Illuminates the Mechanism of Arrestin Translocation
Recent studies have revealed that light adaptation of both vertebrate and invertebrate photoreceptors is accompanied by massive translocations of major signaling proteins in and out of the cellular compartments where visual signal transduction takes place. In this issue of Neuron, Lee and Montell report a breakthrough in understanding the mechanism of arrestin translocation in Drosophila. They ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 31 5 شماره
صفحات -
تاریخ انتشار 2011